Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
JAMA Netw Open ; 6(2): e2255978, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2239367

ABSTRACT

Importance: Estimating the true burden of SARS-CoV-2 infection has been difficult in sub-Saharan Africa owing to asymptomatic infections and inadequate testing capacity. Antibody responses from serologic surveys can provide an estimate of SARS-CoV-2 exposure at the population level. Objective: To estimate SARS-CoV-2 seroprevalence, attack rates, and reinfection in eastern Uganda using serologic surveillance from 2020 to early 2022. Design, Setting, and Participants: This cohort study was conducted in the Tororo and Busia districts of eastern Uganda. Plasma samples from participants in the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria in Uganda Border Cohort were obtained at 4 sampling intervals: October to November 2020, March to April 2021, August to September 2021, and February to March 2022. Each participant contributed up to 4 time points for SARS-CoV-2 serology, with almost half of all participants contributing at all 4 time points, and almost 90% contributing at 3 or 4 time points. Information on SARS-CoV-2 vaccination status was collected from participants, with the earliest reported vaccinations in the cohort occurring in May 2021. Main Outcomes and Measures: The main outcomes of this study were antibody responses to the SARS-CoV-2 spike protein as measured with a bead-based serologic assay. Individual-level outcomes were aggregated to population-level SARS-CoV-2 seroprevalence, attack rates, and boosting rates. Estimates were weighted by the local age distribution according to census data. Results: A total of 1483 samples from 441 participants living in 76 households were tested. Of the 441 participants, 245 (55.6%) were female, and their mean (SD) age was 16.04 (16.04) years. By the end of the Delta wave and before widespread vaccination, adjusted SARS-CoV-2 seroprevalence was 67.7% (95% credible interval [CrI], 62.5%-72.6%) in the study population. During the subsequent Omicron wave, 84.8% (95% CrI, 67.9%-93.7%) of unvaccinated, previously seronegative individuals were infected for the first time, and 50.8% (95% CrI, 40.6%-59.7%) of unvaccinated, already seropositive individuals were likely reinfected, leading to an overall seropositivity of 96.0% (95% CrI, 93.4%-97.9%) in this population. These results suggest a lower probability of reinfection in individuals with higher preexisting antibody levels. There was evidence of household clustering of SARS-CoV-2 seroconversion. No significant associations were found between SARS-CoV-2 seroconversion and gender, household size, or recent Plasmodium falciparum malaria exposure. Conclusions and Relevance: In this cohort study in a rural population in eastern Uganda, there was evidence of very high SARS-CoV-2 infection rates throughout the pandemic inconsistent with national level case data and high reinfection rates during the Omicron wave.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , Adolescent , Male , Rural Population , COVID-19/epidemiology , COVID-19 Vaccines , Cohort Studies , Reinfection , Seroepidemiologic Studies , Uganda/epidemiology
2.
Malar J ; 21(1): 293, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2139303

ABSTRACT

BACKGROUND: In 2020-2021, long-lasting insecticidal nets (LLINs) were distributed nationwide in Uganda during the COVID-19 pandemic. A cross-sectional survey was conducted in 12 districts to evaluate the impact of the campaign 1-5 months after LLIN distribution. METHODS: During April-May 2021, households were randomly selected from target areas (1-7 villages) surrounding 12 government-run health facilities established as Malaria Reference Centres; at least 50 households were enrolled per cluster. Outcomes included household ownership of LLINs distributed through the universal coverage campaign (UCC) (at least one UCC LLIN), adequate coverage of UCC LLINs (at least one UCC LLIN per 2 residents), and use of LLINs (resident slept under a LLIN the previous night). Multivariate logistic regression models were used to identify household- and individual-level factors associated with outcomes, controlling for clustering around health facilities. RESULTS: In total, 634 households, with 3342 residents and 1631 bed-nets, were included. Most households (93.4%) owned at least 1 UCC LLIN, but only 56.8% were adequately covered by UCC LLINs. In an adjusted analysis, the factor most strongly associated with adequate coverage by UCC LLINs was fewer household residents (1-4 vs 7-14; adjusted odds ratio [aOR] 12.96, 95% CI 4.76-35.26, p < 0.001; 5-6 vs 7-14 residents; aOR 2.99, 95% CI 1.21-7.42, p = 0.018). Of the 3166 residents of households that owned at least one UCC LLIN, only 1684 (53.2%) lived in adequately covered households; 89.9% of these used an LLIN the previous night, compared to 1034 (69.8%) of 1482 residents living in inadequately covered households. In an adjusted analysis, restricted to residents of inadequately covered households, LLIN use was higher in children under-five than those aged 5-15 years (aOR 3.04, 95% CI 2.08-4.46, p < 0.001), and higher in household heads than distantly-related residents (aOR 3.94, 95% CI 2.38-6.51, p < 0.001). CONCLUSIONS: Uganda's 2021-21 campaign was successful, despite the COVID-19 pandemic. In future campaigns, strategies should be adopted to ensure high LLIN coverage, particularly for larger households. A better understanding of the drivers of LLIN use within households is needed to guide future interventions, educational messages, and behaviour change communication strategies; school-aged children and distantly-related residents appear vulnerable and could be targeted.


Subject(s)
COVID-19 , Insecticide-Treated Bednets , Child , Humans , COVID-19/epidemiology , Cross-Sectional Studies , Pandemics , Uganda/epidemiology , Family Characteristics , Child, Preschool , Adolescent
3.
Malaria journal ; 21(1), 2022.
Article in English | EuropePMC | ID: covidwho-2073546

ABSTRACT

Background In 2020–2021, long-lasting insecticidal nets (LLINs) were distributed nationwide in Uganda during the COVID-19 pandemic. A cross-sectional survey was conducted in 12 districts to evaluate the impact of the campaign 1–5 months after LLIN distribution. Methods During April–May 2021, households were randomly selected from target areas (1–7 villages) surrounding 12 government-run health facilities established as Malaria Reference Centres;at least 50 households were enrolled per cluster. Outcomes included household ownership of LLINs distributed through the universal coverage campaign (UCC) (at least one UCC LLIN), adequate coverage of UCC LLINs (at least one UCC LLIN per 2 residents), and use of LLINs (resident slept under a LLIN the previous night). Multivariate logistic regression models were used to identify household- and individual-level factors associated with outcomes, controlling for clustering around health facilities. Results In total, 634 households, with 3342 residents and 1631 bed-nets, were included. Most households (93.4%) owned at least 1 UCC LLIN, but only 56.8% were adequately covered by UCC LLINs. In an adjusted analysis, the factor most strongly associated with adequate coverage by UCC LLINs was fewer household residents (1–4 vs 7–14;adjusted odds ratio [aOR] 12.96, 95% CI 4.76–35.26, p < 0.001;5–6 vs 7–14 residents;aOR 2.99, 95% CI 1.21–7.42, p = 0.018). Of the 3166 residents of households that owned at least one UCC LLIN, only 1684 (53.2%) lived in adequately covered households;89.9% of these used an LLIN the previous night, compared to 1034 (69.8%) of 1482 residents living in inadequately covered households. In an adjusted analysis, restricted to residents of inadequately covered households, LLIN use was higher in children under-five than those aged 5–15 years (aOR 3.04, 95% CI 2.08–4.46, p < 0.001), and higher in household heads than distantly-related residents (aOR 3.94, 95% CI 2.38–6.51, p < 0.001). Conclusions Uganda’s 2021–21 campaign was successful, despite the COVID-19 pandemic. In future campaigns, strategies should be adopted to ensure high LLIN coverage, particularly for larger households. A better understanding of the drivers of LLIN use within households is needed to guide future interventions, educational messages, and behaviour change communication strategies;school-aged children and distantly-related residents appear vulnerable and could be targeted. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04302-7.

4.
Malar J ; 20(1): 475, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1635854

ABSTRACT

BACKGROUND: In March 2020, the government of Uganda implemented a strict lockdown policy in response to the COVID-19 pandemic. Interrupted time series analysis (ITSA) was performed to assess whether major changes in outpatient attendance, malaria burden, and case management occurred after the onset of the COVID-19 epidemic in rural Uganda. METHODS: Individual level data from all outpatient visits collected from April 2017 to March 2021 at 17 facilities were analysed. Outcomes included total outpatient visits, malaria cases, non-malarial visits, proportion of patients with suspected malaria, proportion of patients tested using rapid diagnostic tests (RDTs), and proportion of malaria cases prescribed artemether-lumefantrine (AL). Poisson regression with generalized estimating equations and fractional regression was used to model count and proportion outcomes, respectively. Pre-COVID trends (April 2017-March 2020) were used to predict the'expected' trend in the absence of COVID-19 introduction. Effects of COVID-19 were estimated over two six-month COVID-19 time periods (April 2020-September 2020 and October 2020-March 2021) by dividing observed values by expected values, and expressed as ratios. RESULTS: A total of 1,442,737 outpatient visits were recorded. Malaria was suspected in 55.3% of visits and 98.8% of these had a malaria diagnostic test performed. ITSA showed no differences between observed and expected total outpatient visits, malaria cases, non-malarial visits, or proportion of visits with suspected malaria after COVID-19 onset. However, in the second six months of the COVID-19 time period, there was a smaller mean proportion of patients tested with RDTs compared to expected (relative prevalence ratio (RPR) = 0.87, CI (0.78-0.97)) and a smaller mean proportion of malaria cases prescribed AL (RPR = 0.94, CI (0.90-0.99)). CONCLUSIONS: In the first year after the COVID-19 pandemic arrived in Uganda, there were no major effects on malaria disease burden and indicators of case management at these 17 rural health facilities, except for a modest decrease in the proportion of RDTs used for malaria diagnosis and the mean proportion of malaria cases prescribed AL in the second half of the COVID-19 pandemic year. Continued surveillance will be essential to monitor for changes in trends in malaria indicators so that Uganda can quickly and flexibly respond to challenges imposed by COVID-19.


Subject(s)
Ambulatory Care , COVID-19/epidemiology , Malaria/epidemiology , Chronic Disease Indicators , Humans , Infection Control , Interrupted Time Series Analysis , Malaria/diagnosis , Malaria/therapy , Malaria/transmission , Rural Health , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL